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 A B S T R A C T 

The importance of stock index forecasting can never be underestimated in the 

world of investments. However, for a rational investor who is reasonably risk-

averse, the ability to forecast volatility in the index is at least as important, if not 

more, as the capability to predict the return. The current study measured the 

volatility in the KSE 100 Index using the ARCH-GARCH modeling techniques. 

Daily figures of the Index were taken from January 2010 to August 2020 leading 

to 2,660 observations. It was found that KSE 100 Index was characterized by 

ARCH effects meaning that there were certain periods that were more volatile 

followed by relatively tranquil periods. In operational terms, the ARCH(4) 

configuration delivered better results than ARCH(1) or any other ARCH model. 

The best GARCH model, on the other hand, for the KSE 100 Index was found to 

be GARCH(1,1). Finally, analysis of the TGARCH and the EGARCH portrayed 

that asymmetries were there in the positive and negative news for the KSE 100 

Index. Hence, bad news was found to have a significantly larger impact on the 

volatility of the Index than good news. 

 

  

 

INTRODUCTION 

For a modern-day investor planning to buy a share of common stock, a forecast of the rate of return the 

stock offers is not enough. He or she will also be interested in knowing the expected variability (or 

volatility) of returns in the stock. An obvious reason is that most of the investors are risk-averse, and 

therefore, will prefer to invest in a less risky stock to a riskier one. 

The present study attempts to measure the volatility of stock returns. However, instead of measuring the 

variance of individual stocks, it endeavors to measure, and compare, the volatility of KSE 100 Index 

which represents movements in the stock market in Pakistan as a whole. The study will, therefore, be 

employing the popular ARCH family of modeling techniques first presented by Engle (1982) and which 

mailto:mustafa@icp.edu.pk
mailto:fayaz@icp.edu.pk
mailto:shahidjan@icp.edu.pk


488 

 

is based on the premise that variance of the error term at any given time is dependent on the squared 

error from previous periods.  

The study holds two objectives: One is to explore whether the level of volatility in KSE 100 Index is 

constant in the long-run or not. If the answer to the first objective is in negation, or in other words, if it 

is found that there are periods of higher volatility followed by lower volatility or vice versa in the index, 

then the other objective of the study is to find how many autoregressive and/or moving average terms of 

variance are required to explain the current, or future, variance in the returns of the index. 

 

REVIEW OF LITERATURE 

Up so far, many researches in different countries have used the ARCH family of models to apprehend 

the variance in returns of stock markets. Studies have shown that markets at embryonic stage have their 

own operational scopes. Developing markets face many failures including asymmetric information, 

monitored frameworks, shallow markets, and projected swapping of small investors along with many 

more. 

Stock market volatility was forecasted in US stock returns of S&P 500 index, and GARCH effects were 

noticed (Srinivasan, 2011). In a study specifically conducted to compare the effects of different 

configurations of the ARCH family of models, Danielson (1994) brought into being that compared with 

the GARCH(1, 2), ARCH(5), and IGARCH(1, 1, 0) models, EGARCH(2, 1) model executed better 

results on S&P 500 Index’s daily data taken from 1980 to 1987. Volatility at the Tokyo Stock Exchange 

in stock returns was observed by Tse (1991) who found significant effects of GARCH and ARCH 

returns. Another researcher Guidi (2009) studied the volatility of Swiss, German and UK stock market 

indices and found significant GARCH effects in all of them. 

Gokean (2000) in his study found that GARCH(1, 1) model predicted volatility better in evolving stock 

markets. The variability of returns in stock market in India was established by Kannadhasan et al (2018), 

Joshi (2014), Banumathy et al (2012), and Goudarzi & Ramanarayanan (2009). These studies showed 

that the insistent asymmetric negative outcome was often larger than the positive one. Lim and Sek 

(2013) found that the volatility of stock market showed symmetric and asymmetric GARCH archetypes 

in Malaysia. Lin (2018) also modeled the volatility of SSE composite index using the GARCH models 

and concluded that the index did have GARCH effects. 

There have been a few studies conducted in Pakistan to explore volatility clustering in its stock market. 

For instance, Akhter and Khan (2016) established that KSE-100 Index returns series on daily, weekly, 

and monthly basis portrayed distribution that was non-normal, stationarity, and also volatility clustering. 
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Also, they stated that the new EWMA model worked suitably well in finding the level of volatility in 

the monthly series. Moreover, the P-GARCH(1, 1) model was efficient for returns taken on the daily 

basis, whereas the GARCH(1, 1) configuration was more accurate in making predictions on the weekly 

basis in the KSE 100 Index. Other researchers also found that good and bad news had a different impact 

on volatility (Javid & Mubarik, 2016). For KSE-100 Index all the asymmetric models were used but 

only EARCH model impacted leverage negatively. It established that good news increases volatility and 

bad news decreases volatility. Researchers concluded that volatility in Pakistani stock market index 

could be better modeled by asymmetric models.   

Husain and Uppal (1999), while reviewing the variance of returns in stock markets in Pakistan, found 

that GARCH(1, 1) was more appropriate in depicting the conditional variance, and also observed an 

evidence of perseverance in variance of KSE returns. Hameed et al (2006) also discovered that modeling 

of the conditional variance of stock returns of Pakistani Stock Index showed asymmetries and clustering. 

Mahmud and Mirza (2011) also used ARCH techniques in Karachi Stock Exchange and determined that 

the EGARCH(1, 1) apprehended the asymmetric effect effectively during the financial crisis. 

 

 

RESEARCH METHODOLOGY 

The current study utilizes the time series data of the most cited stock index of Pakistan, i.e., the KSE 

100 Index. For the purpose of analysis and in order to induce stationarity in the time series, returns were 

computed and used instead of the index points. 

Since, as mentioned in the Introduction part of the paper, the primary objective was to check whether 

the future volatility in a given stock index can be forecasted by keeping in view its lagged variance, 

therefore, the ARCH-GARCH models were employed. As a first step, it was checked whether the time 

series under consideration was characterized by ARCH effects or not. After it was found that the series 

did involve periods of high and low volatility, it was subjected to ARCH tests in lower and higher orders. 

Following that, the GARCH test was also performed to make the model more parsimonious, yet more 

accurate. In addition, GARCH-M, TGARCH, and EGARCH were also estimated for the Index.    

Daily figures of KSE 100 Index were taken and the data were obtained from ksestocks.com. Based on 

the availability of the data, the data for the said index was taken from Jan 01, 2010 until August 02, 2020 

leading to 2660 observations. 
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ANALYSES AND FINDINGS 

Like many time series variables, KSE 100 Index is also a non-stationary series and needs differencing 

in order to render it stationary. We, therefore, calculate its returns which automatically involves taking 

the first difference. After computing the returns, the next step is to check whether the series reflects any 

ARCH effects or not. To do this, a simple line graph is formed (see figure 1).    
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Figure 1: Plot of the Returns of KSE 100 Index 

 
 

As can be seen, the graph clearly depicts evidence of ARCH effects in the time series under 

consideration. The series does not have a constant or equal variance over time. Therefore, ARCH models 

are safe and pertinent to be run. 

Our analysis starts with estimation of an AR(1) model which is run through EViews using the ordinary 

least squares method: 

 

 

Table 1: An AR(1) Model for KSE 100 Index 

Dependent Variable: KSE Returns  

Method: Least Squares  

Sample (adjusted): 3 2661  

     
Variable Coefficient Std. Error t-Statistic Prob. 
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C .0005 .0001 2.384 .017 

KSERETURNS(-1) .143 .019 7.480 .000 

     
     
R-squared .021     Mean dependent var .0005 

Adjusted R-squared .020     S.D. dependent var .010 

S.E. of regression .010     Akaike info criterion -6.339 

Sum squared resid .275     Schwarz criterion -6.334 

Log likelihood 8429.524     Hannan-Quinn criter. -6.337 

F-statistic 55.946     Durbin-Watson stat 2.000 

Prob(F-statistic) 0.000    

 

The results of this regression are technically of no use to us. In fact, the residuals of this model are to be 

used to compute ARCH effects. As a starting point, we check for the effects of ARCH(1) presented in 

the table 2. 

 

 
Table 2: Testing for ARCH(1) Effects in the KSE 100 Index 

Heteroskedasticity Test: ARCH  

     
F-statistic 60.513     Prob. F(1,2656) .000 

Obs*R-squared 59.209     Prob. Chi-Square(1) .000 

     
Dependent Variable: RESID^2   

Method: Least Squares  

Included observations: 2658 after adjustments  

     
Variable Coefficient Std. Error t-Statistic Prob. 

     C 8.79E-05 5.40E-06 16.265 .000 

RESID^2(-1) .149 .019 7.779 .000 

     
     
R-squared .022     Mean dependent var 0.0001 

Adjusted R-squared .0219     S.D. dependent var 0.0003 

S.E. of regression .0002     Akaike info criterion -13.678 

Sum squared resid .0001     Schwarz criterion -13.673 

Log likelihood 18179.70     Hannan-Quinn criter. -13.676 

F-statistic 60.513     Durbin-Watson stat 2.082 

Prob(F-statistic) .000    

 

The Obs*R-squared statistic, as can be seen in table 2, has a value of 59.209 with a high level of 

significance suggesting that the null hypothesis of no heteroskedasticity can be rejected, or that 

ARCH(1) effects are clearly there. But before we estimate the ARCH model, we will be testing for a 

higher order of ARCH effects using the OLS. 

 
Table 3: Testing for ARCH(4) Effects in the KSE 100 Index 

Heteroskedasticity Test: ARCH  

     
     

F-statistic 98.859     Prob. F(4,2650) .000 

Obs*R-squared 344.740     Prob. Chi-Square(4) .000 
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Dependent Variable: RESID^2  

Method: Least Squares  

Included observations: 2655 after adjustments  

     
Variable Coefficient Std. Error t-Statistic Prob.   

     
C 4.79E-05 5.59E-06 8.569 .000 

RESID^2(-1) .046 .019 2.379 .017 

RESID^2(-2) .231 .019 12.093 .000 

RESID^2(-3) .159 .019 8.306 .000 

RESID^2(-4) .102 .019 5.259 .000 

     
     

R-squared .130     Mean dependent var .0001 

Adjusted R-squared .129     S.D. dependent var .0003 

S.E. of regression .0002     Akaike info criterion -13.791 

Sum squared resid .0001     Schwarz criterion -13.780 

Log likelihood 18312.62     Hannan-Quinn criter. -13.787 

F-statistic 98.859     Durbin-Watson stat 2.042 

Prob(F-statistic) .000    

 

Table 3 presents the effects of ARCH(4). The Observed R-squared is now even higher (344.74, p < 

0.0001) with all lags being highly significant. This obviously points out toward possible ARCH(4) 

effects in our variable of interest, i.e., the KSE 100 Index.     

We will now be estimating an ARCH model to further confirm whether it will give better results or not. 

We start with ARCH(1) model. 

 

 
 
Table 4: An ARCH(1) Model for the KSE 100 Index 

Dependent Variable: KSE RETURNS  

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) 

Included observations: 2659 after adjustments 

Coefficient covariance computed using outer product of gradients 

Presample variance: backcast (parameter = .7) 

GARCH = C(3) + C(4)*RESID(-1)^2  

     
Variable Coefficient Std. Error z-Statistic Prob. 

     C .0005 .0001 3.116 .002 

KSERETURNS(-1) .212 .012 17.322 .000 

     
 Variance Equation   

     
C 7.62E-05 1.83E-06 41.707 .000 

RESID(-1)^2 .297 .020 14.497 .000 

     
R-squared .016     Mean dependent var 0.000551 

Adjusted R-squared .0153     S.D. dependent var 0.010270 

S.E. of regression .0101     Akaike info criterion -6.394906 
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Sum squared resid .275956     Schwarz criterion -6.386052 

Log likelihood 8506.028     Hannan-Quinn criter. -6.391702 

Durbin-Watson stat 2.136651    

 

Table 4 shows that it took 11 iterations to reach convergence in model estimation. Note that the term 

“RESID(-1)^2” in the variance equation in the table represents ARCH(1). The coefficient of ARCH(1) 

is positive and highly significant (0.29, p < 0.0001) and so is consistent with our findings from the OLS 

method.   

We will now be, of course, estimating a higher order ARCH configuration. Table 5 presents ARCH(4) 

results. 

 

Table 5: An ARCH(4) Model for the KSE 100 Index 

Dependent Variable: KSE RETURNS  

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) 

Included observations: 2659 after adjustments  

Coefficient covariance computed using outer product of gradients 

Presample variance: backcast (parameter = .7) 

GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*RESID(-2)^2 + C(6)*RESID(-3)^2 + C(7)*RESID(-4)^2 

     
Variable Coefficient Std. Error z-Statistic Prob. 

     C .001 .0001 5.725 .000 

KSERETURNS(-1) .188 .020 9.299 .000 

     
     
 Variance Equation   

     
C 4.42E-05 1.99E-06 22.205 .000 

RESID(-1)^2 .168 .021 7.802 .000 

RESID(-2)^2 .179 .023 7.808 .000 

RESID(-3)^2 .163 .021 7.860 .000 

RESID(-4)^2 .083 .016 5.129 .000 

     
     

R-squared .016     Mean dependent var .0005 

Adjusted R-squared .015     S.D. dependent var .010 

S.E. of regression .010     Akaike info criterion -6.502 

Sum squared resid .275     Schwarz criterion -6.486 

Log likelihood 8651.471     Hannan-Quinn criter. -6.496 

Durbin-Watson stat 2.084    

     
 

Again we have that all the ARCH coefficients are statistically significant and positive, a result 

consistent with our findings from the OLS regression. The conditional variance graph for the ARCH(4) 

model can be seen in figure 2. 
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Figure 2: Conditional Variance Graph for an ARCH(4) model of the KSE 100 Index 
 
ARCH(q) models often lack parsimony in that there are too many lags involved in them. Moreover, they 

look more like a moving average specification. We, therefore, now compute the GARCH(p, q) to 

introduce some simplicity in our model. In order to do that, we run the model again this time using the 

GARCH(1, 1) specification to see whether the results get better or not. 

 

Table 6: A GARCH(1,1) Model for the KSE 100 Index 
 

Dependent Variable: KSE RETURNS  

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) 

Included observations: 2659 after adjustments  

Coefficient covariance computed using outer product of gradients 

Presample variance: backcast (parameter = .7) 

GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1) 

     
Variable Coefficient Std. Error z-Statistic Prob.   

     
C .001 .0001 5.803 .000 

KSERETURNS(-1) .181 .021 8.410 .000 

     
 Variance Equation   

     
C 5.55E-06 8.16E-07 6.797 .000 

RESID(-1)^2 .149 .014 10.907 .000 
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GARCH(-1) .799 .017 46.817 .000 

     
R-squared .016     Mean dependent var .0005 

Adjusted R-squared .016     S.D. dependent var .010 

S.E. of regression .010     Akaike info criterion -6.538 

Sum squared resid .276     Schwarz criterion -6.527 

Log likelihood 8697.069     Hannan-Quinn criter. -6.534 

Durbin-Watson stat 2.069    

 
 

As was noted earlier, the term “RESID(-1)^2” in table 6 represents the ARCH(1). It is obvious that the 

both the ARCH(1) and the GARCH(1) coefficients are positive and highly significant. The GARCH(1) 

has a very strong coefficient of almost 0.8 revealing that there are strong effects of the lagged conditional 

variance terms when taken as the autoregressive terms. 

 

 

 

 
Figure 3: Conditional Variance Graph for a GARCH(1,1) model of the KSE 100 Index 
 

Examining the graphs of ARCH(4) presented in figure 2 and that of GARCH(1, 1) shown in figure 3, it 

can be easily inferred that the two patterns are very similar, if not perfectly identical, depicting that the 

GARCH is able to capture high orders of ARCH. Hence, estimating lower orders of GARCH than higher 
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orders of ARCH is, of course, convenient, easy to interpret, as well as more accurate since it leads to the 

minimum loss of the degrees of freedom. 

It is wise to check for higher orders of GARCH as well. We, therefore, try an over-parameterized 

GARCH(4, 4) model. 

 
 
Table 7: A GARCH(4,4) Model for the KSE 100 Index 

Dependent Variable: KSE RETURNS  

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) 

Included observations: 2659 after adjustments  

Coefficient covariance computed using outer product of gradients 

Presample variance: backcast (parameter = .7) 

GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*RESID(-2)^2 + C(6)*RESID(-3)^2 + C(7)*RESID(-4)^2 + C(8)*GARCH(-

1) + 

C(9)*GARCH(-2) + C(10)*GARCH(-3) + C(11)*GARCH(-4) 

     
Variable Coefficient Std. Error z-Statistic Prob. 

     C .001 .0001 5.837 .000 

KSERETURNS(-1) .184 .021 8.740 .000 

     
     
 Variance Equation   

     C 2.36E-05 3.86E-06 6.111 .000 

RESID(-1)^2 .145 .016 9.139 .000 

RESID(-2)^2 .181 .025 7.328 .000 

RESID(-3)^2 .189 .020 9.459 .000 

RESID(-4)^2 .091 .024 3.703 .000 

GARCH(-1) -.369 .081 -4.540 .000 

GARCH(-2) -.231 .048 -4.788 .000 

GARCH(-3) .108 .063 1.721 .085 

GARCH(-4) .665 .057 11.658 .000 

          
R-squared .016     Mean dependent var .0005 

Adjusted R-squared .016     S.D. dependent var .010 

S.E. of regression .010     Akaike info criterion -6.540 

Sum squared resid .275     Schwarz criterion -6.516 

Log likelihood 8706.438     Hannan-Quinn criter. -6.531 

Durbin-Watson stat 2.076    

 

Table 7 presents the results of GARCH(4, 4) model where now all the parameters are significant except 

for GARCH(3) which is slightly insignificant. There are, however, two negative GARCH terms in this 

model. Before we make a decision as to which model would be more suitable, let’s try a GARCH(1, 4) 

model as well. 

 

 

Table 8: A GARCH(1,4) Model for the KSE 100 Index 
Dependent Variable: KSE RETURNS  

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) 

Included observations: 2659 after adjustments  

Coefficient covariance computed using outer product of gradients 
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Presample variance: backcast (parameter = .7) 

GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*RESID(-2)^2 + C(6)*RESID(-3)^2 + C(7)*RESID(-4)^2 + C(8)*GARCH(-

1) 

     
Variable Coefficient Std. Error z-Statistic Prob. 

     C .001 .0001 5.742 .000 

KSERETURNS(-1) .180 .021 8.573 .000 

     
     
 Variance Equation   

     C 5.11E-06 9.98E-07 5.114 .000 

RESID(-1)^2 .130 .021 6.260 .000 

RESID(-2)^2 .025 .027 .907 .364 

RESID(-3)^2 .016 .027 .605 .545 

RESID(-4)^2 -.033 .023 -1.411 .158 

GARCH(-1) .814 .026 31.183 .000 

     
     

R-squared .016     Mean dependent var .0005 

Adjusted R-squared .016     S.D. dependent var .010 

S.E. of regression .010     Akaike info criterion -6.536 

Sum squared resid .276     Schwarz criterion -6.519 

Log likelihood 8698.096     Hannan-Quinn criter. -6.529 

Durbin-Watson stat 2.068    

 
 

The GARCH(1, 4) has three of its ARCH terms highly insignificant revealing again that the higher order 

ARCH terms are already captured by the GARCH(1, 1) model. A comparison of the three models shows 

that ARCH(1, 1) is slightly better than GARCH(4, 4) and definitely better than GARCH(1, 4) in that it 

has both (all) of its terms significant. 

We now attempt to try a few other GARCH variants including the GARCH-M, the TGARCH, and the 

EGARCH models. We start with the GARCH-M, or the GARCH in Mean, model which allows the 

conditional mean to vary according to its very own conditional variance. 

 

 
Table 9: A GARCH-M(1,1) Model for the KSE 100 Index 

Dependent Variable: KSE RETURNS  

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) 

Included observations: 2659 after adjustments  

Coefficient covariance computed using outer product of gradients 

Presample variance: backcast (parameter = .7) 

GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*GARCH(-1) 

     
Variable Coefficient Std. Error z-Statistic Prob. 

     GARCH 3.602 3.533 1.019 .308 

C .0007 .0003 2.279 .022 

KSERETURNS(-1) .180 .021 8.287 .000 

     
     
 Variance Equation   

     
C 5.58E-06 8.16E-07 6.838 .000 

RESID(-1)^2 .149 .014 10.889 .000 

GARCH(-1) .799 .017 46.842 .000 
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R-squared .014     Mean dependent var .0005 

Adjusted R-squared .013     S.D. dependent var .010 

S.E. of regression .010     Akaike info criterion -6.537 

Sum squared resid .276     Schwarz criterion -6.524 

Log likelihood 8697.636     Hannan-Quinn criter. -6.533 

Durbin-Watson stat 2.055    

 

The variance term (GARCH) in the mean equation in table 9 is insignificant. However, the inclusion of 

this term has increased the significance level of the GARCH term in the variance equation. We now see 

the results of the threshold GARCH (TGARCH) which adds a multiplicative dummy in the variance 

equation to check whether the difference between the positive and negative shocks is significant or not. 

 

 

Table 10: A TGARCH(1,1) Model for the KSE 100 Index 
Dependent Variable: KSE RETURNS  

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) 

Included observations: 2659 after adjustments  

Coefficient covariance computed using outer product of gradients 

Presample variance: backcast (parameter = .7) 

GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*RESID(-1)^2*(RESID(-1)<0) + C(6)*GARCH(-1) 

     
Variable Coefficient Std. Error z-Statistic Prob. 

     C .0005 .0001 3.402 .0007 

KSERETURNS(-1) .198 .019 10.036 .000 

     
     
 Variance Equation   

     C 5.62E-06 6.89E-07 8.151 .000 

RESID(-1)^2 .009 .010 .927 .353 

RESID(-1)^2*(RESID(-1)<0) .246 .023 10.454 .000 

GARCH(-1) .813 .016 51.607 .000 

          
R-squared .017     Mean dep. Var .0005 

Adjusted R-squared .017     S.D. dependent var .010 

S.E. of regression .010     Akaike info cri. -6.585 

Sum squared resid .275     Schwarz criterion -6.572 

Log likelihood 8761.346     Hannan-Quinn cri. -6.581 

Durbin-Watson stat 2.108    

 

Since the coefficient of the “RESID(-1)^2*(RESID(-1)<0)” term in table 10 is positive and highly 

significant, it can be inferred that for KSE 100 Index there are asymmetries in positive and negative 

news. So bad news has a significantly larger impact on the volatility of stock index than good news. 

 

Table 11: An EGARCH(1,1) Model for the KSE 100 Index 
Dependent Variable: KSE RETURNS  

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) 

Included observations: 2659 after adjustments  

Coefficient covariance computed using outer product of gradients 
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Presample variance: backcast (parameter = .7) 

LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(5)*RESID(-1)/@SQRT(GARCH(-1)) + 

C(6)*LOG(GARCH(-1)) 

     
Variable Coefficient Std. Error z-Statistic Prob. 

     C .0005 .0001 3.319 .000 

KSERETURNS(-1) .194 .019 10.045 .000 

     
     
 Variance Equation   

     C(3) -.783 .071 -10.955 .000 

C(4) .230 .021 11.057 .000 

C(5) -.162 .013 -12.820 .000 

C(6) .936 .007 136.029 .000 

     
     

R-squared .018     Mean dependent var .0005 

Adjusted R-squared .018     S.D. dependent var .010 

S.E. of regression .010     Akaike info criterion -6.590 

Sum squared resid .275     Schwarz criterion -6.577 

Log likelihood 8767.477     Hannan-Quinn criter. -6.585 

Durbin-Watson stat 2.101    

We finally complete our analysis of the KSE 100 Index by computing EGARCH(1, 1). Table 11 presents 

the results of the EGARCH model. All the C terms are highly significant indicating again that bad news 

at KSE 100 Index have deeper impacts on stock prices than good news. 

 

 

CONCLUSION 

The ARCH family of models were employed to model the variance of daily returns of KSE 100 Index. 

It was found that ARCH effects were present in the index and therefore techniques modeling the variance 

could present better results than those modeling the returns. Operationally, ARCH(4) model rendered 

better results than ARCH(1) or any other ARCH arrangement. As far as the GARCH modeling was 

concerned, the index was better off with the GARCH(1, 1) configuration. Results of the GARCH-M 

model revealed that inclusion of the GARCH term in the mean equation had increased the significance 

level of the GARCH term in the variance equation for the index. Finally, the TGARCH and the 

EGARCH concluded that there were asymmetries in the positive and negative news for the KSE 100 

Index. Hence, bad news was found to have a significantly larger impact on the volatility of the index 

under consideration than good news.  
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